Detecting Crop Circles in Google Earth Images with Mask R-CNN and YOLOv3
نویسندگان
چکیده
Automatic detection and counting of crop circles in the desert can be great use for large-scale farming as it enables easy timely management land. However, so far, literature remains short relevant contributions this regard. This letter frames problem within a deep learning framework. In particular, accounting their outstanding performance object detection, we investigate Mask R-CNN (Region Based Convolutional Neural Networks) well YOLOv3 (You Only Look Once) models circle desert. order to quantify performance, build dataset from images extracted via Google Earth over area East Oweinat South-Western Desert Egypt. The totals 2511 samples. With small training set relatively large test set, plausible rates were obtained, scoring precision 1 recall about 0.82 0.88 0.94 regarding YOLOv3.
منابع مشابه
Prostate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملKey Design Issues with Visualising Images Using Google Earth
Using map visualisation tools and earth browsers to display images in a spatial context is integral to many photo-sharing sites and commercial image archives, yet little academic research has been conducted into the utility and functionality of such systems. In developing a prototype system to explore the use of Google Earth in the visualisation of news photos, we have elicited key design issue...
متن کاملR-CNN minus R
Deep convolutional neural networks (CNNs) have had a major impact in most areas of image understanding, including object category detection. In object detection, methods such as R-CNN have obtained excellent results by integrating CNNs with region proposal generation algorithms such as selective search. In this paper, we investigate the role of proposal generation in CNN-based detectors in orde...
متن کاملPedestrian Detection with R-CNN
In this paper we evaluate the effectiveness of using a Region-based Convolutional Neural Network approach to the problem of pedestrian detection. Our dataset is composed of manually annotated video sequences from the ETH vision lab. Using selective search as our proposal method, we evaluate the performance of several neural network architectures as well as a baseline logistic regression unit. W...
متن کاملME R-CNN: Multi-Expert R-CNN for Object Detection
Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11052238